Best rated amorphous metal cores factory

Nanocrystalline transformer core factory 2024: Silicon Steel Cores are essential components used in various electrical applications due to their unique magnetic properties. These cores are typically made from a high-silicon alloy, which helps to reduce energy losses by minimizing eddy currents. This results in improved efficiency and performance of transformers, electric motors, generators, and other electromagnetic devices. Silicon Steel Cores play a crucial role in the operation of these machines by providing a path for magnetic flux to flow through while maintaining low core losses. The silicon steel transformer core can be laminated to further enhance their magnetic characteristics and reduce power loss even more effectively. Silicon Steel Cores are indispensable in the field of electrical engineering for creating efficient and reliable electromagnetic equipment. Discover a lot more info at

After surface insulation treatment, the magnetic core is evenly mixed with the binder, pressed and annealed. There are basically three ways to obtain nanocrystalline powder: amorphous strip crushing after annealing and crystallization, mechanical alloying and molten alloy atomization. At present, mechanical alloying is still in the laboratory research stage. A few companies produce amorphous strip crystallization in small quantities in China, but it is unable to expand the market due to cost reasons. Compared with other methods, molten alloy atomization method has high efficiency and low cost. Its disadvantage is that the amorphous content of the powder is low and the loss is high.

However, at the same BM, the loss of Fe based amorphous alloy is smaller than that of 0.23mm thick 3% silicon steel. It is generally believed that the reason for low loss is the thin thickness and high resistivity of iron-based amorphous alloy strip. This is only one aspect. The main reason is that the iron-based amorphous alloy is amorphous, the atomic arrangement is random, there is no magnetocrystalline anisotropy caused by atomic directional arrangement, and there is no grain boundary causing local deformation and composition offset. Therefore, the energy barrier hindering domain wall motion and magnetic moment rotation is very small, with unprecedented soft magnetism, so it has high permeability, low coercivity and low loss.

As one of Transmart Industrial’s multiple product series, mumetal cores series enjoy a relatively high recognition in the market. Transmart Industrial provides diversified choices for customers. The mu-metal cores are available in a wide range of types and styles, in good quality and in reasonable price.Transmart Industrial effectively improves after-sales service by carrying out strict management. This ensures that every customer can enjoy the right to be served.

The common mode inductor using nanocrystalline core material can well suppress the peak voltage, protect sensitive components, and reduce the motor shaft voltage. Because of the unique characteristics of nanocrystalline core, it has been well used in some high-power system industries. Electric energy meter, power meter, ammeter, electric measuring equipment and other instrument fields. Various power current transformers in power transmission and distribution monitoring system. Leakage protection, relay protection, servo motor protection, fire monitoring, etc Current and voltage data sampling, etc. Read more info at

The transformer is made according to the principle of electromagnetic induction Two windings, a primary winding and a secondary winding, are wound around the closed iron core column When AC power supply voltage is applied to the primary winding There is alternating current in the original Rao group, and the magnetic potential is established. Under the action of the magnetic potential, the alternating main flux is generated in the iron core. The main flux passes through the iron core at the same time, AC link the primary and secondary windings are closed, and the induced electromotive force is generated in the primary and secondary windings respectively due to the action of electromagnetic induction.

Related posts