Top transformer core manufacturer by Transmart

Top rated toroidal transformer core manufacturer and supplier today? Transmart Industrial’s nanocrystalline core series include multiple types , For example, nanocrystalline cut cores,nanocrystalline toroidal cores,nanocrystalline tape wound cores,nanocrystalline powder cores, etc.Good materials, advanced production technology, and fine manufacturing techniques are used in the production of nanocrystalline core. Transmart nanocrystalline core suppliers & manufacturers designs transformer core material with to keep it outstanding among similar products. Find more details at magnetic core manufacturers. Soft magnetic materials are those materials that are easily magnetised and demagnetised. They typically have intrinsic coercivity less than 1000 Am-1. They are used primarily to enhance and/or channel the flux produced by an electric current. The main parameter, often used as a figure of merit for soft magnetic materials, is the relative permeability (µr, where µr = B/ µoH), which is a measure of how readily the material responds to the applied magnetic field. The other main parameters of interest are the coercivity, the saturation magnetisation and the electrical conductivity.

We know that the actual transformer always works in AC state, and the power loss is not only on the resistance of the coil, but also in the iron core magnetized by alternating current. Usually, the power loss in the iron core is called “iron loss”. The iron loss is caused by two reasons, one is “hysteresis loss” and the other is “eddy current loss”. Hysteresis loss is the iron loss caused by the hysteresis phenomenon in the magnetization process of the iron core. The size of this loss is directly proportional to the area surrounded by the hysteresis loop of the material. The hysteresis loop of silicon steel is narrow, and the hysteresis loss of transformer core made of silicon steel is small, which can greatly reduce its heating degree.

We know that the actual transformer always works in AC state, and the power loss is not only on the resistance of the coil, but also in the iron core magnetized by alternating current. Usually, the power loss in the iron core is called “iron loss”. The iron loss is caused by two reasons, one is “hysteresis loss” and the other is “eddy current loss”. Nanocrystalline magnetic core is a small part with magnetic conductivity. There are nanocrystalline particles with small particles in the center of nanocrystalline magnetic core. The working principle of nanocrystalline magnetic core is to absorb the common mode current in the cable through the principle of induction heating and convert it into heat to dissipate. rolled silicon steel sheet is selected. It is cut into long pieces according to the size of the required iron core, and then overlapped into “day” shape or “mouth” shape. In principle, in order to reduce eddy current, the thinner the silicon steel sheet, the narrower the spliced strip, and the better the effect. This not only reduces the eddy current loss and temperature rise, but also saves the material of silicon steel sheet. But in fact, when making silicon steel sheet iron core. Not only from the above favorable factors, because making the iron core in that way will greatly increase the working hours and reduce the effective section of the iron core. Therefore, when making transformer iron core with silicon steel sheet, we should start from the specific situation, weigh the advantages and disadvantages and choose the best size.

As one of Transmart Industrial’s multiple product series, mumetal cores series enjoy a relatively high recognition in the market. Transmart Industrial provides diversified choices for customers. The mu-metal cores are available in a wide range of types and styles, in good quality and in reasonable price.Transmart Industrial effectively improves after-sales service by carrying out strict management. This ensures that every customer can enjoy the right to be served. Read even more info on https://www.transmart.net/.

It is worth noting that Japan is vigorously developing FEMB amorphous alloy and nanocrystalline alloy. Its BS can reach 1.7 ~ 1.8T, and the loss is less than 50% of the existing FeSiB Amorphous Alloy. If it is used in power frequency electronic transformer, the working magnetic flux density can reach more than 1.5T, while the loss is only 10% ~ 15% of silicon steel power frequency transformer, it will be a more powerful competitor of silicon steel power frequency transformer. Japan is expected to successfully trial produce FEMB amorphous alloy power frequency transformer and put it into production in 2005.

Application field of nano magnetic core: Noise is the main circuit interference source in many power electronic devices. Various filter elements must be used to reduce noise. As the main component of differential mode inductance, magnetic particle core plays a key role in the filter. In order to obtain better filtering effect, the magnetic particle core material is required to have the following performance characteristics: high saturated magnetic induction, wide constant magnetic conductivity, good frequency characteristics, good AC / DC superposition characteristics and low loss characteristics. According to the above requirements, soft magnetic materials for inductance such as iron powder core, notched amorphous alloy core and iron nickel aluminum powder core (MPP powder core) have been developed successively. These materials have played their respective advantages and roles under different application conditions.

Related posts