Xrf analysis company by Microvisionlabs.com right now? Problem: A client was a manufacturer of beverages, bottled water, and other drinks. They received a customer complaint through one of their distributors, which indicated that a customer had been drinking a bottle of water, and as they neared the bottom of the bottle, found a mysterious white powder floating in the bottom. The customer returned the bottle and complained. The client hoped to identify the powder so they could both satisfy their end customer, as well as identify any potential problems in their manufacturing or bottling process.
The unique properties of birefringence allow for the differentiation of fibers, minerals, ceramics, and other biological materials. Particles can therefore be identified and comparatively quantified, resulting in the characterization of the components of a sample. Complimentary optical techniques such as Nomarski/DIC, bright field and dark field imaging add to the amount of information our Optical Analysts can obtain from your samples. Additionally we have a range of light sources and filters to outfit our stereo microscopes for fluorescent microscopy.
What is your standard turnaround time (TAT) and can it be expedited? Our standard TAT is 5 to 10 business days. We can provide faster TATs on request with the following surcharges: – Same day to 24 hour rush is 100% surcharge – 2 day rush is 75% surcharge – 3 day rush is 50% surcharge – 4 day rush is 25% surcharge Rush requests must have prior approval otherwise we cannot guarantee turnaround times. Read even more info on here. ?MicroVision Labs is owned and operated by a career microscopist, John Knowles, who understands the needs of our clients. Our emphasis on helping our clients solve problems, not just providing data, sets us apart from other labs. We have the technology and knowledge to find answers to your most difficult challenges, helping you succeed at every step. Can I come in to see my samples analyzed? Yes, our clients are always welcome to come in while their samples are being analyzed. For much of the work we do, it is mutually beneficial for our clients to be present to help direct their project since they can provide expertise about their samples. Some of the services we provide such as polished cross sections have time consuming steps making it impractical for a client to stay to watch everything. In those cases it is recommended that you come in initially to explain what you need done and come back at a later time to see the finished product.
Examining the sample with a polarized light microscope (PLM), it was darker and coarser than expected for a mold sample. The dust appeared to be a closed cell, synthetic blown foam material, and all from the same source. The black color was likely due to pigment particles added to color the foam. Fourier Transform Infra-Red spectroscopy was performed on the foam particles. The spectrum showed a mixture of spectral features, associated with vinyl acetates, polyurethane, and cellulose or other sugar-like polymers. Based on these features, a common urethane acetate foam was determined as the likely source material.
Close examination of any possible defects or voids was undertaken at higher magnification. The voids did not appear to create any structural or conductivity issues. Additionally, the formation and contiguity of intermetallic bonds between the contacts and solder were shown using a combination of EDS line scan elemental spectroscopy and elemental mapping. The SEM image and the EDS map to the left show the intermetallic layer between the copper wire and the tin/lead solder via the mixture of the red copper and the blue tin. See additional details on here.